PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999

Exact density profile of a stochastic reaction-diffusion process
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We calculate exactly the time dependent density profile of a one-dimensional stochastic reaction-diffusion
process of hard-core particles subjected to the reacAdns: OO andAO=0A. The solution is based on the
fundamental property that the evolution operator, defined over an appropriate vector space, transforms vectors
with n kinks into vectors wittm or n+2 kinks, only. In this space, a basis vector is represented by a string of
plus and minus signs and a kink is defined as a pair of opposite signs. The exact time dependent profiles are
calculated for the cases of uncorrelated initial states that are translational invariant as well as initial states that
are inhomogeneous in spa¢81063-651X%99)01409-9

PACS numbd(s): 05.40—a, 05.50:+q, 82.20.M;j

[. INTRODUCTION evolution operator can be mapped into a Heisenberg operator
which turns out to be integrable by a Jordan-Wigner trans-
The connection between stochastic reaction-diffusion sysformation [5,6]. From the solution it is possible to derive
tems defined on a lattice and quantum spin moflelslg  correlation functions and the density profile as functions of
has been found to be fruitful for both areas of research. Théme. Whenl'y=0 andI';#0 the densityp decays algebra-
techniques developed for the investigation of quantum spitcally to its asymptotic zero value. In one dimension the
models can be used in the Study of reaction-diffusion Sysasymptotic time behaVi'Or is dominated by ﬂl..lctuations .and
tems and, conversely, some results known for the latteWe expect thap~t~*? instead of the mean field behavior
might provide information for quantum spin models. TheP ™t~ , ,
best known example of such a connection is related to the |N€ main purpose of the present work is to give, for the
symmetric diffusion of classical hard-core particles on a lat-"€€ fermion case, an exact solution of the reaction-diffusion

tice, or symmetric exclusion process, whose evolution operfmblem' The formalism gseql here avoids the _\ngner-_Jordan
tor can be mapped into the quantum spin-1/2 ferromagneti ransformation and explons, instead, the_qua5|block dlggonal
Heisenberg Hamiltonian. For a review on the uses of quanproperty of the evolutlo_n operator, obtained when using an
A . appropriate representation, and the property, common to any
tum the_ory in diffusion-limited reactions see the recent Workstochastic process described by a master equation, that the
by Mattis and Glasselr19]. ) . referencevector (the leading left eigenvector of the evolu-
. In general for a stochastic system of hard-core partlclgshion operatoy is always knowra priori. We use a represen-
in which no more than one particle can be present on a sit§gtion in which the occupied and empty sites are associated
described by a master equation, it is possible to map thg, the spinors{) and (¢ ,), respectively, instead of the usual
corresponding evolution operator into a generalized spin-1/2eresentation. In this representation, the evolution operator
Heisenberg operator that need not be Hermitian. In fact, only,ansforms a given vector into a vector with the same number
when the stochastic process, in the stationary state, has dgf kinks or into a vector with two more kinks, which implies
tailed balancéor equivalently microscopic reversibilitgan 3 quasiblock diagonal property to the evolution operator. The
it be brought into a Hermitian form. Usually, the quantum number of kinks in a generic vector will be defined below.
Heisenberg operator is written in a representation in whichvioreover, the reference state is a vector with no kinks.
an occupied site is associated to a spirfprgnd an empty The approach presented here allows us to easily recover
site by a spinor{). In one dimension it is possible to obtain, the exact results obtained previously by other methods
in certain cases, an exact solution by means of techniqud4,5,10 and to get new ones such as the time dependent
such as the use of the Bethe ansatz and the mapping intodensity profile corresponding to a traveling burfgr hol-
free fermion model by a Jordan-Wigner transformation. low). We find that, for large times, the bump, or the hollow,

In this paper we consider a reaction-diffusion stochastianoves with a velocity 2[(,—1I';) so that the effect of driv-
process occurring on a one-dimensional lattice in which eacing can be absorbed by a Galilean transformation to a refer-
site may be occupied by at most one parti@é or may be  ence frame moving with such a velocity in accordance with a
empty (©). The process is composed of the following four result of Schte [9].
reactions:(@) OO—AA, creation of two particles with rate
I'y, (b) OA—AOQ, diffusion to the lefwith rateI', (c) AO
—OA, diffusion to the rightwith rate I',, and (d) AA
— 0O, annihilation of two particles with ratel’;. Such a We consider a reaction-diffusion one-species process oc-
reaction-diffusion process and particular cases of it haveurring on a one-dimensional lattice Mfsites described by a
been treated by the use of a quantum formalig4m10 and  master equation. Each site is either empty or occupied by at
also by other approach¢20—-26. When the transition rates most one particle. A configuration is represented by means
obey thefree fermioncondition[5,6], I'g+I'3=1"1+1',, the  of variablesz;, i=1,2,...N, such thaty; takes the values 0

1. MODEL
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or 1 according to whether the sitéis empty or occupied. as long ad’; andI', are not both zero. The stationary state
The time evolution of the probability distributioR(7,t) of  |Wey belonging to the even sector is set up then as a linear
a configurationy= (71,7, . . . ,7y) at timet is governed by combination of these solutions, namely,

the master equation

1
[Wep=———=D2 {P.(M+P_(}n), @
%P(n,n:E {W(l= 1= 7 2)P(7" 1 0) L+@p=DN %

from which one obtains the stationary density of particles

~W(7i,7+1)P(n,0)}, D
where 71 stands for §q,.... 1= 7;,1= i1, . ... 7N) ~ 1+(2p-pht 5
andw(n;,7;) is the transition rate, given bw(00)=T", Ps=P 1+(2p— DN '
w(01)=T,, w(10)=T",, andw(11)=T"5. Periodic boundary
conditions are used, that igy 1= 7;. which in the limitN— gives the resulps=p.

Next we wish to represent the probability of a configura-  The time evolution equation
tion as a vector in a convenient vector space. To this end we
attach to each sitea ket vectorjo;) that may be either the d
column matrix §)=|+) or ()=|-). The whole vector — W (1)) =W|W(t)) (6)
space is then represented by the ket basis vedto}s dt
=|o.0, - -on)=|01)®|02)® - ®|oy), a direct product
of the vectorgo;). Similarly one introduces the row matrices
(1 0)=(+] and (1 1)=(—|, and the bra basis vectofs|.
A given configuration of particleg is associated to the ket
vector | n)=|7)®|n,)®---®|ny) where | ;) is either
(h=[1)=|+)+|-) or (1)=|0)=|+)—|-) according to
whetherz;=1 (occupied sitgor 7;=0 (empty site, respec-

of the state vector is obtained from the master equation
by using standard techniqug3,4,18. The evolution opera-
tor W=2;W, j,, is a sum of operators such thaf ; ., acts
locally on the neighboring sitésandi + 1 and has the matrix
representation

tively. At timet the state of the system is then represented by 0 000
the vector|W(t)) defined by a cd b
Wi,i+l: b d c a ’ (7)
W (t)=2 P(5.0)n). 2 0000
7

) where
Analogously, one defines the bra vector 7|

={(m|®{n,|®- - ®(ny\| where(z;| can be either the vec- 1
tor (1|=3((+|+(—|) or(0|=3({+|—(~—]). The reference a==(—T4+T,—T1+T), @)
vector(O|=% (n|=(+++---+| plays a special role in 2
the present formalism because besides being a leading eigen-
vector of the evolution operator it gives the sum of the co- 1
efficients of the expansion it of any ket vector. In par- b= E(—F3—F2+ '+, 9
ticular, the density of particlesp; at site i is p;
=(O|n;|W(t)), wheren; is the number operator at site
defined byn;|1)=|1) and n;|0)=0 so thatn;|=)=(]+) C:E(_F3_F2_F1_FO)1 (10)
+=))12. 2

The reaction-diffusion process considered here conserves
parity, that is, if one starts with a configuration with an even 1
(odd number of particles, the system will always stay with d= E(_F3+ I,+T1—T). (11
an even(odd number of particles. This means that the evo-
lution operator splits into two nonconnecting sectors: an
even and an odd sector. For simplicity we will restrict our-
selves to the even sector and consider the number ofHites
to be even.

By inspection we see that

From now on we restrict ourselves to the cd&gt1';
=TI",+TI;. In this case the elemenfs- —|W; ;4| —+) =d
and(—+|W, ;4 1|+—) =d vanish and the evolution opera-
tor W acquires a remarkable property. Let us define the num-
ber of kinks in the vectofo) as the number of- — and
— + pairs in the configuratioor= (01,05, ... ,0y). FOr ex-

_ V(] — 17 ample, the vectof+ + + — —++) has two kinks. The ac-
P(7) l_I[ (=p)7(A=p) ® tion of Won a right vectota) with n kinks gives either right
vectors with n kinks or right vectors withn+2 kinks.
are stationary solutions of the master equatibnwhere the  Equivalently, the action ofV on a left vector(o| with n
parametemp= \/F—O/(\/F—o+ \/F—s). These solutions are inde- kinks gives either left vectors with kinks or left vectors
pendent of the diffusion parametdrs andI', and are valid  with n—2 kinks.
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Denote byP,, the operator that projects out states with 1 n .
kinks; this property can be written &,WP, =0 unless pi=pst s EK e'2K(O| o} | W )
n'=norn’=n-2. From this it follows that

X W (0)) = (T We}, (18)

W=2, P.WP,+ 2> P,WP,_, (120 where we have taken into account that= (1+07)/2 and
" 3 that(O| o] is a vector belonging to the sector with two kinks.

) o We used also the resultd4), (15), (16), the orthogonality
so that the matriXV splits into blocks, each one of them peyeen vectors with distinct number of kinks, and the nor-
connect'lng subspaces with a definite nymber of k|nI_<s. Th‘?nalization(Oe\,I\If(O)>=1. The calculation of the density
nonvanishing blocks are those belonging to the diagongh fiie by the relatior(18) is then reduced to the determina-

(n"=n) and to the left subdiagonah(=n—2). All blocks . f the ei Siv within th f Kink
to the right of the diagonal vanish, implying that the eigen-ton Of the eigenvectors oV within the sector of two kinks.

values of thew are the same as those of the block diagonal
matrix Ill. DENSITY PROFILE

Eigenvectors ofW with two kinks are obtained as fol-
lows. First, let us introduce the notation

W=>, PWP,. (13
n
1 / m N
. ~ . _ [++++———++++), /<m (19
The eigenvectors oV can then be classified according to | & m)=
the number of kinks they have. We denote [, and |i__f++jr___ﬁ> m</. (20

(¥, the right and left normalized eigenvectors \&f be-
longing to the sector of kinks and byA, the associated These vectors form a closed subspace of vectors with two

eigenvalue. The corresponding eigenvectorsAbfdenoted . . ol _ .
by | ¥, and(¥,/, do not possess, in general, a deﬁniteklnks and the eigenvalue equatiov| ¢, m) =A[,m) is

number of kinks. However, they have the following struc-
ture: 2clp, mytald, ymtald, m 1)

+b|¢/+1,m>+b|¢/,m+1>:A|¢/m> (21)

W0 =V +1ns 200+ [nsard + - (34 andis valid for/#m. Such an eigenvalue problem is similar

to the problem of two spin waves in the Heisenberg ferro-
_ magnet[27] and is better treated by introducing sum and
(Vold =i +{(&n—aul +{(Lnapl +- -, (15  difference coordinate27]. We define then new coordinates
uandv by u=(/+m)/2 andv=(m—/)/2 when 1=/
where| ¢, and (. denote general vectors belonging to <m=<N and u=mod(/+m+N)/2N) and v=(m—/
the sector o kinks. In particular, the left and right eigen- +N)/2 when I=m</<N. The solution of the eigenvalue
vectors corresponding ta=0 are (Og|=({+++---|+ equation gives the right eigenvectors

(=——"--+|)/12 and the stationary stat&’,) given by Eq.

(4). Since(Og is the only left vector belonging to the sector

of zero kink, the left eigenvectqr¥',,| corresponding tam |{1‘,KQ>:2 e KusinQu|d,,), (22)
=2 must be, according to E@l5), a linear combination of uv

(¥,,| and(Og,]. Imposing the orthogonality with the right _
eigenvectol ) we get where|® ) =|#,m) and the possible values BfandQ are

K=2mny/N and Q=2mn,/N with n;,n,=0,1,...N—1.
The corresponding eigenvalues are

<q,2,k|=<‘I'2,k|_<{i,2,k|q,ev><oev|- (16)
. . Q
— —iK/2 K/2

The time evolution of the state vector is given by the Ako=2c+2(ae” ™"+ be™)cos (23

formal solution of Eq.(6), that is, by|¥(t))=e'"|¥(0))
from which we obtain Similarly we obtain the normalized left eigenvectors
~ 2 .
[W()=[Te)+ D MW (¥, |¥(0). (17) (Tol=— X (D€ " sinQ. (24)
n(¥0) k N2 &

From this expression it follows that The density of particles at a given siteis given by
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1 ~
Pm=pst > % etAKQ<(Dm—1/2,1/2]‘I’KQ>

X{( Wl W(0)—(Tyo|¥en). (25
A straightforward calculation gives
- 1 sinQ/2 i
—_ 5 D X" 1 _QiQNR2
(PkolVey N5K'°A+cosQ/2(1 e™~"), (26
whereA=c/(a+b) and
T\ a—iK(M=1/2)q Q
(Prm-1214¥ko)=¢€ sinz-. (27)

We consider initial states that are uncorrelated, that is,
states such that the probability distribution is of the Bernoulli
type. Actually we will consider as the initial state the projec-

tion of such a state over the even sector, given by

1
[(0)=7 2 1]l (p)"a=p) "m). (29

where [(7)=1+1I;(=1)7 and Z=1+11;(2p;—1) is the
normalization constant.

First, we will treat the case of a translational invariant

initial state, that is, such that = p, independent of the site.
In this case a straightforward calculation gives

2 sinQ/2
s Q

— - - _ AiQN/2
N K'OB—cosQ/Z(1 e,

(Wl (0))= (29
where B=[(2po— 1) *+2py—1]/2. Substituting this ex-
pression and expressiof®6) and(27) in Eq. (25) and after
taking the limitN— o we obtain the time dependent density

1 J ™ thog (A+B)sir’ Q/2
47 )o (A+cosQ/2)(B—cosQ/2)

dQ,
(30

p=pst

which is independent of the site.

WhenT'3=0, A=1 and this expression reduces to the

one obtained by Santost al. [10]. For the casey=1, a
lattice initially full of particles,B=1, and expressio30)
gives a result obtained by Grynbeegal. [5]. If, moreover,
I'o=0 we havep;=0, A=B=1 so that

1 (=
p= ;f e—2tl"3(l—cosa)d9:e—2tl"3|O(Ztrs), (31)
0
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lated and the density at any sitegs=1/2 except the sité¢
=N/2 for which the density i$y,»=p4. A straightforward
calculation gives

sin9
5

(32

~ 2 . . |
(Uil ¥(0))= @(Zpa— 1)(e/KN2_ giQNi2) giK/2

Substituting this expression and expressi@®& and(27) in
Eg. (25 and making the translatiof=m—N/2 we obtain,
after taking the limitN— oo, the time dependent density pro-
file

(2pa—1)

27 (27 ) Q
f etrkee K giP=dKdQ,
2m)?% Jo Jo 2

(33

p/=pct

wherep, is a site independent term which coincides with the
right hand side of Eq(30) for the density corresponding to
an initial homogeneous conditign = 1/2.

Expression(33) gives the exact density profile at any
time. To find the long time behavior one expands the inte-
grand in smalK andQ. The result is

(2pa—1)
2m(2t|T3—T¢|)?

,_ T2
Xexp{—[/ 2t(I',—T'y)]

4T 53—T |
wherel'=Ty if I'3>T'g and'=T"3 if I'3<I'y. The density
profile exhibits a Gaussian bump,df>1/2, or a hollow, if
pa<1/2. For large times the bump, or the hollow, moves
with a velocity 2(",—1";) so that the effect of driving can
be absorbed by a Galilean transformation to a reference
frame moving with such a velocity in accordance with a
result of Schiz [9]. The horizontal size of the bump, or
hollow, increases &stt|T"3—I'y|]1*2 whereas its vertical size
decreases as 2”4,

pr=pct

—MT|, (34

IV. CONCLUSION

We have provided a derivation of the exact density profile
of a one-dimensional reaction-diffusion process where hard-
core particles, subject to diffusion, can be annihilated and
created. The solution is possible because, in the representa-
tion used here and within the free fermion condition, the
evolution operatokV transforms vectors with a certain num-
ber of kinks into vectors with the same number of kinks or
with two more kinks. This property implies thaV has the

same set of eigenvalues as the block diagonal opef&tor
The calculation of the density profile is reduced to the deter-

wherel y(z) is the Bessel function of zero order. This result mination of the eigenvectors &V within the sector of two

was obtained by Lushnikojl] and also by Grynbergt al.

kinks. The calculation of the two-site correlations is also

[5]. The asymptotic behavior of the density for large times ispossible but needs the eigenvectors belonging to the sector of

p~ (4mtlg) 2,

four kinks. Our approach allows us to recover exact results

We consider finally the case of an initial density profile already known and to obtain new ones such as the time de-

displaying a bumgor a hollow. The initial state is uncorre-

pendent density profile of a traveling bump.
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