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Exact density profile of a stochastic reaction-diffusion process

Mário J. de Oliveira
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 17 February 1999!

We calculate exactly the time dependent density profile of a one-dimensional stochastic reaction-diffusion
process of hard-core particles subjected to the reactionsAA
OO andAO
OA. The solution is based on the
fundamental property that the evolution operator, defined over an appropriate vector space, transforms vectors
with n kinks into vectors withn or n12 kinks, only. In this space, a basis vector is represented by a string of
plus and minus signs and a kink is defined as a pair of opposite signs. The exact time dependent profiles are
calculated for the cases of uncorrelated initial states that are translational invariant as well as initial states that
are inhomogeneous in space.@S1063-651X~99!01409-9#

PACS number~s!: 05.40.2a, 05.50.1q, 82.20.Mj
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I. INTRODUCTION

The connection between stochastic reaction-diffusion s
tems defined on a lattice and quantum spin models@1–18#
has been found to be fruitful for both areas of research.
techniques developed for the investigation of quantum s
models can be used in the study of reaction-diffusion s
tems and, conversely, some results known for the la
might provide information for quantum spin models. T
best known example of such a connection is related to
symmetric diffusion of classical hard-core particles on a
tice, or symmetric exclusion process, whose evolution op
tor can be mapped into the quantum spin-1/2 ferromagn
Heisenberg Hamiltonian. For a review on the uses of qu
tum theory in diffusion-limited reactions see the recent wo
by Mattis and Glasser@19#.

In general for a stochastic system of hard-core partic
in which no more than one particle can be present on a
described by a master equation, it is possible to map
corresponding evolution operator into a generalized spin
Heisenberg operator that need not be Hermitian. In fact, o
when the stochastic process, in the stationary state, has
tailed balance~or equivalently microscopic reversibility! can
it be brought into a Hermitian form. Usually, the quantu
Heisenberg operator is written in a representation in wh
an occupied site is associated to a spinor (0

1) and an empty
site by a spinor (1

0). In one dimension it is possible to obtai
in certain cases, an exact solution by means of techniq
such as the use of the Bethe ansatz and the mapping in
free fermion model by a Jordan-Wigner transformation.

In this paper we consider a reaction-diffusion stocha
process occurring on a one-dimensional lattice in which e
site may be occupied by at most one particle~A! or may be
empty (O). The process is composed of the following fo
reactions:~a! OO→AA, creation of two particles with rate
G0, ~b! OA→AO, diffusion to the leftwith rateG1, ~c! AO
→OA, diffusion to the rightwith rate G2, and ~d! AA
→OO, annihilation of two particles with rateG3. Such a
reaction-diffusion process and particular cases of it h
been treated by the use of a quantum formalism@1–10# and
also by other approaches@20–26#. When the transition rate
obey thefree fermioncondition@5,6#, G01G35G11G2, the
PRE 601063-651X/99/60~3!/2563~5!/$15.00
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evolution operator can be mapped into a Heisenberg oper
which turns out to be integrable by a Jordan-Wigner tra
formation @5,6#. From the solution it is possible to deriv
correlation functions and the density profile as functions
time. WhenG050 andG3Þ0 the densityr decays algebra-
ically to its asymptotic zero value. In one dimension t
asymptotic time behavior is dominated by fluctuations a
we expect thatr;t21/2 instead of the mean field behavio
r;t21.

The main purpose of the present work is to give, for t
free fermion case, an exact solution of the reaction-diffus
problem. The formalism used here avoids the Wigner-Jor
transformation and exploits, instead, the quasiblock diago
property of the evolution operator, obtained when using
appropriate representation, and the property, common to
stochastic process described by a master equation, tha
referencevector ~the leading left eigenvector of the evolu
tion operator! is always knowna priori. We use a represen
tation in which the occupied and empty sites are associa
to the spinors (1

1) and (21
1 ), respectively, instead of the usu

representation. In this representation, the evolution oper
transforms a given vector into a vector with the same num
of kinks or into a vector with two more kinks, which implie
a quasiblock diagonal property to the evolution operator. T
number of kinks in a generic vector will be defined belo
Moreover, the reference state is a vector with no kinks.

The approach presented here allows us to easily rec
the exact results obtained previously by other meth
@1,5,10# and to get new ones such as the time depend
density profile corresponding to a traveling bump~or hol-
low!. We find that, for large times, the bump, or the hollo
moves with a velocity 2(G22G1) so that the effect of driv-
ing can be absorbed by a Galilean transformation to a re
ence frame moving with such a velocity in accordance wit
result of Schu¨tz @9#.

II. MODEL

We consider a reaction-diffusion one-species process
curring on a one-dimensional lattice ofN sites described by a
master equation. Each site is either empty or occupied b
most one particle. A configuration is represented by me
of variablesh i , i 51,2, . . . ,N, such thath i takes the values 0
2563 © 1999 The American Physical Society
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2564 PRE 60MÁRIO J. de OLIVEIRA
or 1 according to whether the sitei is empty or occupied.
The time evolution of the probability distributionP(h,t) of
a configurationh5(h1 ,h2 , . . . ,hN) at timet is governed by
the master equation

d

dt
P~h,t !5(

i
$w~12h i ,12h i 11!P~h i ,i 11,t !

2w~h i ,h i 11!P~h,t !%, ~1!

where h i ,i 11 stands for (h1 , . . . ,12h i ,12h i 11 , . . . ,hN)
and w(h i ,h j ) is the transition rate, given byw(00)5G0 ,
w(01)5G1 , w(10)5G2, andw(11)5G3. Periodic boundary
conditions are used, that is,hN115h1.

Next we wish to represent the probability of a configu
tion as a vector in a convenient vector space. To this end
attach to each sitei a ket vectorus i& that may be either the
column matrix (0

1)[u1& or (1
0)[u2&. The whole vector

space is then represented by the ket basis vectorsus&
[us1s2•••sN&5us1& ^ us2& ^ •••^ usN&, a direct product
of the vectorsus i&. Similarly one introduces the row matrice
(1 0)[^1u and (1 1)[^2u, and the bra basis vectors^su.
A given configuration of particlesh is associated to the ke
vector uh&[uh1& ^ uh2& ^ •••^ uhN& where uh i& is either
(1

1)[u1&5u1&1u2& or (21
1 )[u0&5u1&2u2& according to

whetherh i51 ~occupied site! or h i50 ~empty site!, respec-
tively. At time t the state of the system is then represented
the vectoruC(t)& defined by

uC~ t !&5(
h

P~h,t !uh&. ~2!

Analogously, one defines the bra vector̂ hu
5^h1u ^ ^h2u ^ •••^ ^hNu where^h i u can be either the vec
tor ^1u[ 1

2 (^1u1^2u) or ^0u[ 1
2 (^1u2^2u). The reference

vector ^Ou5(h^hu5^111•••1u plays a special role in
the present formalism because besides being a leading e
vector of the evolution operator it gives the sum of the c
efficients of the expansion in̂hu of any ket vector. In par-
ticular, the density of particlesr i at site i is r i

5^Oun̂i uC(t)&, where n̂i is the number operator at sitei,
defined by n̂i u1&5u1& and n̂i u0&50 so that n̂i u6&5(u1&
1u2&)/2.

The reaction-diffusion process considered here conse
parity, that is, if one starts with a configuration with an ev
~odd! number of particles, the system will always stay w
an even~odd! number of particles. This means that the ev
lution operator splits into two nonconnecting sectors:
even and an odd sector. For simplicity we will restrict ou
selves to the even sector and consider the number of sitN
to be even.

By inspection we see that

P6~h!5)
i

~6p!h i~12p!12h i ~3!

are stationary solutions of the master equation~1!, where the
parameterp5AG0/(AG01AG3). These solutions are inde
pendent of the diffusion parametersG1 andG2 and are valid
-
e

y

en-
-

es

-
n
-

as long asG1 andG2 are not both zero. The stationary sta
uCev& belonging to the even sector is set up then as a lin
combination of these solutions, namely,

uCev&5
1

11~2p21!N (
h

$P1~h!1P2~h!%uh&, ~4!

from which one obtains the stationary density of particles

rs5p
11~2p21!N21

11~2p21!N
, ~5!

which in the limit N→` gives the resultrs5p.
The time evolution equation

d

dt
uC~ t !&5WuC~ t !& ~6!

of the state vector is obtained from the master equation~1!
by using standard techniques@3,4,18#. The evolution opera-
tor W5( iWi ,i 11 is a sum of operators such thatWi ,i 11 acts
locally on the neighboring sitesi andi 11 and has the matrix
representation

Wi ,i 115S 0 0 0 0

a c d b

b d c a

0 0 0 0

D , ~7!

where

a5
1

2
~2G31G22G11G0!, ~8!

b5
1

2
~2G32G21G11G0!, ~9!

c5
1

2
~2G32G22G12G0!, ~10!

d5
1

2
~2G31G21G12G0!. ~11!

From now on we restrict ourselves to the caseG01G3
5G21G1. In this case the elements^12uWi ,i 11u21& 5d
and^21uWi ,i 11u12& 5d vanish and the evolution opera
tor W acquires a remarkable property. Let us define the nu
ber of kinks in the vectorus& as the number of12 and
21 pairs in the configurations5(s1 ,s2 , . . . ,sN). For ex-
ample, the vectoru1112211& has two kinks. The ac-
tion of W on a right vectorus& with n kinks gives either right
vectors with n kinks or right vectors withn12 kinks.
Equivalently, the action ofW on a left vector^su with n
kinks gives either left vectors withn kinks or left vectors
with n22 kinks.
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Denote byPn the operator that projects out states withn
kinks; this property can be written asPnWPn850 unless
n85n or n85n22. From this it follows that

W5(
n

PnWPn1(
n

PnWPn22 ~12!

so that the matrixW splits into blocks, each one of them
connecting subspaces with a definite number of kinks. T
nonvanishing blocks are those belonging to the diago
(n85n) and to the left subdiagonal (n85n22). All blocks
to the right of the diagonal vanish, implying that the eige
values of theW are the same as those of the block diago
matrix

W̃5(
n

PnWPn . ~13!

The eigenvectors ofW̃ can then be classified according
the number of kinks they have. We denote byuC̃nk& and

^C̃nku the right and left normalized eigenvectors ofW̃ be-
longing to the sector ofn kinks and byLnk the associated
eigenvalue. The corresponding eigenvectors ofW, denoted
by uCnk& and ^Cnku, do not possess, in general, a defin
number of kinks. However, they have the following stru
ture:

uCnk&5uC̃nk&1uzn12,k&1uzn14,k&1•••, ~14!

^Cnku5^C̃nku1^zn22,ku1^zn24,ku1•••, ~15!

where uznk& and ^znku denote general vectors belonging
the sector ofn kinks. In particular, the left and right eigen
vectors corresponding ton50 are ^Oevu5(^111•••u1
^222•••u)/2 and the stationary stateuCev& given by Eq.
~4!. Since^Oevu is the only left vector belonging to the sect
of zero kink, the left eigenvector̂C2,ku corresponding ton
52 must be, according to Eq.~15!, a linear combination of

^C̃2,ku and ^Oevu. Imposing the orthogonality with the righ
eigenvectoruCev& we get

^C2,ku5^C̃2,ku2^C̃2,kuCev&^Oevu. ~16!

The time evolution of the state vector is given by t
formal solution of Eq.~6!, that is, by uC(t)&5etWuC(0)&
from which we obtain

uC~ t !&5uCev&1 (
n(Þ0),k

etLnkuCnk&^CnkuC~0!&. ~17!

From this expression it follows that
e
al

-
l

r i5rs1
1

2 (
k

etL2,k^Ous i
xuC̃2,k&

3$^C̃2,kuC~0!&2^C̃2,kuCev&%, ~18!

where we have taken into account thatn̂i5(11s i
x)/2 and

that^Ous i
x is a vector belonging to the sector with two kink

We used also the results~14!, ~15!, ~16!, the orthogonality
between vectors with distinct number of kinks, and the n
malization ^OevuC(0)&51. The calculation of the density
profile by the relation~18! is then reduced to the determina

tion of the eigenvectors ofW̃ within the sector of two kinks.

III. DENSITY PROFILE

Eigenvectors ofW̃ with two kinks are obtained as fol
lows. First, let us introduce the notation

uf l m&5H u1
1

111
l

222
m

1111
N

&, l ,m

u2
1

222
m

111
l

2222
N

&, m,l .

~19!

~20!

These vectors form a closed subspace of vectors with

kinks and the eigenvalue equationW̃uf l m&5Luf l m& is

2cuf l m&1auf l 21,m&1auf l ,m21&

1buf l 11,m&1buf l ,m11&5Luf l m& ~21!

and is valid forl Þm. Such an eigenvalue problem is simila
to the problem of two spin waves in the Heisenberg fer
magnet@27# and is better treated by introducing sum a
difference coordinates@27#. We define then new coordinate
u and v by u5(l 1m)/2 and v5(m2l )/2 when 1<l
,m<N and u5mod„(l 1m1N)/2,N… and v5(m2l
1N)/2 when 1<m,l <N. The solution of the eigenvalue
equation gives the right eigenvectors

uC̃KQ&5(
uv

e2 iKu sinQvuFuv&, ~22!

whereuFuv&5uf l m& and the possible values ofK andQ are
K52pn1 /N and Q52pn2 /N with n1 ,n250,1, . . . ,N21.
The corresponding eigenvalues are

LKQ52c12~ae2 iK /21beiK /2!cos
Q

2
. ~23!

Similarly we obtain the normalized left eigenvectors

^C̃KQu5
2

N2 (
uv

^FuvueiKu sinQv. ~24!

The density of particles at a given sitem is given by
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rm5rs1
1

2 (
KQ

etLKQ^Fm21/2,1/2uC̃KQ&

3$^C̃KQuC~0!&2^C̃KQuCev&%. ~25!

A straightforward calculation gives

^C̃KQuCev&52
1

N
dK,0

sinQ/2

A1cosQ/2
~12eiQN/2!, ~26!

whereA5c/(a1b) and

^Fm21/2,1/2uC̃KQ&5e2 iK (m21/2)sin
Q

2
. ~27!

We consider initial states that are uncorrelated, that
states such that the probability distribution is of the Berno
type. Actually we will consider as the initial state the proje
tion of such a state over the even sector, given by

uC~0!&5
1

Z (
h

I ~h!)
i

~r i !
h i~12r i !

12h iuh&, ~28!

where I (h)511) i(21)h i and Z511) i(2r i21) is the
normalization constant.

First, we will treat the case of a translational invaria
initial state, that is, such thatr i5r0 independent of the site
In this case a straightforward calculation gives

^C̃KQuC~0!&5
2

N
dK,0

sinQ/2

B2cosQ/2
~12eiQN/2!, ~29!

where B5@(2r021)2112r021#/2. Substituting this ex-
pression and expressions~26! and ~27! in Eq. ~25! and after
taking the limitN→` we obtain the time dependent dens

r5rs1
1

4pE0

2p

etL0,Q
~A1B!sin2 Q/2

~A1cosQ/2!~B2cosQ/2!
dQ,

~30!

which is independent of the site.
When G050, A51 and this expression reduces to t

one obtained by Santoset al. @10#. For the caser051, a
lattice initially full of particles,B51, and expression~30!
gives a result obtained by Grynberget al. @5#. If, moreover,
G050 we havers50, A5B51 so that

r5
1

pE0

p

e22tG3(12cosu)du5e22tG3I 0~2tG3!, ~31!

whereI 0(z) is the Bessel function of zero order. This res
was obtained by Lushnikov@1# and also by Grynberget al.
@5#. The asymptotic behavior of the density for large times
r;(4ptG3)21/2.

We consider finally the case of an initial density profi
displaying a bump~or a hollow!. The initial state is uncorre
s,
li
-

t

t

s

lated and the density at any site isr i51/2 except the sitei
5N/2 for which the density isrN/25ra . A straightforward
calculation gives

^C̃KQuC~0!&5
2

N2
~2ra21!~eiKN/22eiQN/2!e2 iK /2 sin

Q

2
.

~32!

Substituting this expression and expressions~26! and~27! in
Eq. ~25! and making the translationl 5m2N/2 we obtain,
after taking the limitN→`, the time dependent density pro
file

r l 5rc1
~2ra21!

~2p!2 E
0

2pE
0

2p

etLKQe2 iK l sin2
Q

2
dKdQ,

~33!

whererc is a site independent term which coincides with t
right hand side of Eq.~30! for the density corresponding t
an initial homogeneous conditionr i51/2.

Expression~33! gives the exact density profile at an
time. To find the long time behavior one expands the in
grand in smallK andQ. The result is

r l 5rc1
~2ra21!

2p~2tuG32G0u!2

3expS 2
@ l 22t~G22G1!#2

4tuG32G0u
24tG D , ~34!

whereG5G0 if G3.G0 andG5G3 if G3,G0. The density
profile exhibits a Gaussian bump, ifra.1/2, or a hollow, if
ra,1/2. For large times the bump, or the hollow, mov
with a velocity 2(G22G1) so that the effect of driving can
be absorbed by a Galilean transformation to a refere
frame moving with such a velocity in accordance with
result of Schu¨tz @9#. The horizontal size of the bump, o
hollow, increases as@4tuG32G0u#1/2 whereas its vertical size
decreases ast22e24tG.

IV. CONCLUSION

We have provided a derivation of the exact density pro
of a one-dimensional reaction-diffusion process where ha
core particles, subject to diffusion, can be annihilated a
created. The solution is possible because, in the represe
tion used here and within the free fermion condition, t
evolution operatorW transforms vectors with a certain num
ber of kinks into vectors with the same number of kinks
with two more kinks. This property implies thatW has the

same set of eigenvalues as the block diagonal operatoW̃.
The calculation of the density profile is reduced to the de

mination of the eigenvectors ofW̃ within the sector of two
kinks. The calculation of the two-site correlations is al
possible but needs the eigenvectors belonging to the sect
four kinks. Our approach allows us to recover exact res
already known and to obtain new ones such as the time
pendent density profile of a traveling bump.
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